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Abstract
Background: Deep learning based optical coherence tomography (OCT)
segmentation methods have achieved excellent results, allowing quantitative
analysis of large-scale data. However, OCT images are often acquired by differ-
ent devices or under different imaging protocols, which leads to serious domain
shift problem. This in turn results in performance degradation of segmentation
models.
Purpose: Aiming at the domain shift problem, we propose a two-stage
adversarial learning based network (TSANet) that accomplishes unsupervised
cross-domain OCT segmentation.
Methods: In the first stage, a Fourier transform based approach is adopted to
reduce image style differences from the image level. Then, adversarial learning
networks, including a segmenter and a discriminator, are designed to achieve
inter-domain consistency in the segmentation output. In the second stage,
pseudo labels of selected unlabeled target domain training data are used to
fine-tune the segmenter, which further improves its generalization capability.
The proposed method was tested on cross-domain datasets for choroid or
retinoschisis segmentation tasks. For choroid segmentation, the model was
trained on 400 images and validated on 100 images from the source domain,
and then trained on 1320 unlabeled images and tested on 330 images from
target domain I, and also trained on 400 unlabeled images and tested on 200
images from target domain II. For retinoschisis segmentation, the model was
trained on 1284 images and validated on 312 images from the source domain,
and then trained on 1024 unlabeled images and tested on 200 images from the
target domain.
Results: The proposed method achieved significantly improved results over
that without domain adaptation, with improvement of 8.34%, 55.82% and
3.53% in intersection over union (IoU) respectively for the three test sets. The
performance is better than some state-of -the-art domain adaptation methods.
Conclusions: The proposed TSANet, with image level adaptation, feature
level adaptation and pseudo-label based fine-tuning, achieved excellent cross-
domain generalization.This alleviates the burden of obtaining additional manual
labels when adapting the deep learning model to new OCT data.

KEYWORDS
adversarial learning, deep learning, retinal OCT image segmentation, unsupervised domain
adaptation

Med Phys. 2024;1–12. wileyonlinelibrary.com/journal/mp © 2024 American Association of Physicists in Medicine. 1

mailto:shifei@suda.edu.cn
mailto:mdfanying@sjtu.edu.cn
https://wileyonlinelibrary.com/journal/mp
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fmp.17012&domain=pdf&date_stamp=2024-03-01


2 TSA-NET FOR RETINAL OCT SEGMENTATION

1 INTRODUCTION

Optical coherence tomography (OCT), a high resolu-
tion, non-invasive, and highspeed imaging technique,
capable of showing cross sections of the retina, is
widely used in the clinical practice for diagnosis and
management of retinal diseases. Accurate quantization
of retinal tissues and lesions is important for clinical
decisions and thus comes the need for automatic seg-
mentation of OCT images. With the development of
deep convolutional neural networks (CNN),1–3 they have
become powerful tools for automatic segmentation of
retinal OCT images.This has largely alleviated the prob-
lem of difficult lesion identification, greatly reduced the
workload,and improved the diagnostic efficiency of oph-
thalmologists, and is of great importance for treatment
guidance of diseases.

The ideal application scenario for deep learning is to
have the test data with the same distribution as the train-
ing data. However, this assumption often does not hold
in real-world applications. It is well known that medical
images obtained from devices of different manufactur-
ers, or under different imaging protocols, vary greatly
in image quality. For retinal OCT images, for example,
images obtained by spectral domain OCT (SD-OCT)
and swept-source OCT (SS-OCT) devices have differ-
ent contrast between retinal layers, due to the usage of
light sources of different wavelengths.4 Different post-
processing procedures embedded in the scanners,such
as different numbers of averaging, give images with
different noise levels.5 Moreover, in many real-world
applications, collecting enough labeled training data is
often time-consuming and expensive. Therefore, it is
often the case that the CNN model is trained on one
dataset (source domain) where training labels are avail-
able and is expected to work on other datasets (target
domain) where no training labels are provided. The
domain shift between data often limits the generalization
and knowledge reuse ability of traditional deep learning
models.6

Unsupervised domain adaptation (UDA) aims to
address the problem of model performance degradation
caused by domain shift when only source domain anno-
tations are available. Currently, unsupervised domain
adaptation is widely used in CNN-based image classi-
fication tasks.7–12 As for semantic segmentation, many
works on unsupervised domain adaptation have been
carried out based on adversarial learning.Many of them
adopted the CycleGAN13 scheme, some with additional
constraints, to reduce the domain shift in pixel level.
Both Zhang et al.14 and Zhang et al.15 proposed Cycle-
GAN structures with add-on segmentation supervision
for medical image segmentation. The methods of cycle-
consistent adversarial domain adaptation (CyCADA)16

and domain adaptation via deeply synergistic image
and feature alignment (SIFA)17 were proposed which

achieved both pixel-level and feature alignment based
on CycleGAN.

However, the double generators and discriminators of
the CycleGAN can make the network quite complex and
difficult to train. Instead,a variety of works applied adver-
sarial learning in the feature space or output space to
tackle domain shift efficiently. Wang et al.18 proposed to
use a patch-based discriminator to enforce similarity in
the output. Dou et al.19 proposed a plug-and-play adver-
sarial domain adaptation network,consisting of a source
segmentation network, a domain adaptation module,
a feature discriminator, and an output mask discrimi-
nator. Tsai et al. proposed AdaptSeg20 which adopted
two adaptation modules for output space adversarial
learning at different levels. Yan et al.21 also used two-
level output adaption modules, where the Canny edge
detector was introduced to enhance attention to edges
during adversarial learning. Tsai et al. further proposed
AdaptPatch22 which aligned output patch distributions.
Saito et al.proposed maximum classifier discrepancy for
domain adaptation (MCDDA)23 which aligned distribu-
tions of source and target by utilizing the task-specific
decision boundaries. Vu et al. proposed the adversar-
ial entropy minimization (ADVENT) 24 method which
minimized the prediction entropy of the target sample
both directly and through adversarial learning. Chen
et al. further proposed the Maxsquare25 method using
the maximum squares loss for the entropy minimiza-
tion setting. Many of these previous works have shown
that alignment at multiple levels is beneficial for domain
adaptation performance.

Not many works have focused on domain adapta-
tion of OCT image segmentation. Bian et al.26 proposed
uncertainty-aware domain alignment in the feature level
for retina and choroid segmentation. Chai et al.27

proposed a network for choroid segmentation with per-
ceptual loss and adversarial loss in the output space.
Chen et al.28 proposed a CycleGAN-based domain
adaptation method for intraretinal layer segmentation.
He et al.29 proposed a cross-domain fluid segmenta-
tion network using layer structures guidance, which also
performed domain alignment in the output space.These
works only applied single-level domain adaptation, and
their models were tested on one specific OCT segmen-
tation task respectively. Some were only tested on a
specific pair of source and target domains.

In this paper,we propose a two-stage method for OCT
image segmentation based on unsupervised domain
adaptation. The domain shift problem is approached in
multiple levels and using multiple strategies. The first
stage takes the adversarial learning approach. At the
image level, we avoid the complex CycleGAN method
and adopted Fourier coefficient replacement30 to reduce
image style differences. Then at the feature level, adver-
sarial learning is applied in the output space to narrow
the gap of inter-domain feature distribution. The second
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TSA-NET FOR RETINAL OCT SEGMENTATION 3

stage adopts the pseudo-labeling technique. Samples
in the target domain with low-entropy prediction are col-
lected, and the model is fine-tuned with pseudo-labels
to further improve the generalization performance. The
proposed framework was tested on two tasks of cross-
domain choroid segmentation and retinoschisis seg-
mentation, respectively, with images from various scan-
ners and protocols. The results demonstrate its superi-
ority over existing UDA methods and the generalizability
for different source and target domains. Preliminary
version of this work was presented in Ref. [31].

2 MATERIALS AND METHODS

2.1 Datasets

In this paper, we apply the proposed model for two
segmentation tasks respectively, which are choroid and
retinoschisis segmentation. The choroid thickness and
volume are important indices of the progress of various
eye diseases,32 while retinoschisis is one of the most
common lesions in high myopia retina and its location
and size are important for diagnosis and treatment of
pathological myopia.33 The datasets were made up of
clinical data acquired at Shanghai General Hospital.The
collection and analysis of image data were approved
by the Institutional Review Board of Shanghai General
Hospital, and adhered to the tenets of the Declaration
of Helsinki.

For the choroid segmentation task, OCT B-scans
came from both normal and high myopia subjects. The
choroid thickness varies greatly among subjects. The
lower boundary of the choroid is often not well defined,
especially when the noise level is high. The source
domain data were obtained by a Topcon DRI-1 SS-OCT
scanner (Topcon Corp., Japan) in 12-line radial scan
mode. Two datasets were collected as target domain
data respectively. Target domain I data were obtained
by the same Topcon DRI-1 scanner in 256-line volumet-
ric scan mode, and target domain II data were obtained
by a Zeiss Cirrus HD-OCT 4000 (Carl Zeiss Meditec.
Inc, USA) SD-OCT scanner in 128-line volumetric scan
mode.

For the retinoschisis segmentation task,OCT B-scans
came from high myopia subjects. The lesion can appear
in various retinal layers, and the size also varies greatly.
The source domain data were generated by the Topcon
DRI-1 SS-OCT scanner in 12-line radial scan mode,and
the target domain data were obtained by the SVision SS-
OCT scanner (SVision Imaging, Ltd., China) in 96-line
volumetric scan mode.

All B-scans are centered at the macula but may cover
different physical lengths. The image quality was con-
sidered acceptable for clinical diagnosis by inspection
of ophthalmologists, and no other quality control was
performed. The source domain data were divided into

training and validation sets,while the target domain data
were divided into training and testing sets. All the divi-
sions are on patient-level. Manual delineation of the
boundaries was performed by an ophthalmologist using
the biomedical image visualization and analysis soft-
ware ITK-SNAP.34 Smooth curves were drawn where
the boundaries were undefined or broken. The bound-
aries were then converted to binary regional masks as
ground truth.Manual annotation was done on the source
domain data for training and validation, and the target
domain test data for performance evaluation only. The
details of each dataset are shown in Table 1.

Figures 1 and 2 show some OCT B-scans in our
datasets, acquired by different imaging protocols and/or
different devices. It can be observed that these images
differ in noise level, contrast, resolution, etc. The 12-
line radial scans are the results of averaging dozens
of repeated B-scans by the built-in algorithms, and they
have high image quality. With low-level noise and high
contrast, manual annotation is easier and more reliable,
and thus they are used as the labeled source domain
data. However, these B-scans can only cover 12 radial
lines centered at the macula,and cannot give a complete
view of the whole retina. In contrast, B-scans obtained
by the volumetric scanning protocol are raw data or aver-
aging results of only several B-scans, and the noise
level is usually high. Manual labeling of these images is
more difficult and time-consuming, and automatic seg-
mentation becomes more challenging as well. However,
segmentation in these B-scans is of more interest, as
3D reconstruction of the layers or the lesions can be
further obtained to allow more complete analysis.There-
fore, in our study, they are treated as the unlabeled target
domain.

2.2 Overview of the two-stage method

For UDA, denote a pair of labeled source domain data
as (xs, ys) where ys is the ground truth correspond-
ing to the image xs, and an unlabeled target image as
xt. The framework of the proposed method is shown in
Figure 3. The whole framework consists of two stages:
the first-stage domain adaptation, with a segmenter S
and a discriminator D, and the second-stage fine-tuning
of the segmenter. Among them, the first-stage domain
adaptation is further divided into two levels: image-
level style transfer and feature-level adversarial domain
adaptation.

2.3 Image-level style transfer

Generative adversarial networks (GAN) have achieved
excellent results in image style transfer,13–17 but the
model structure is complex and the network training
is difficult and time-consuming. Therefore, we adopt
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4 TSA-NET FOR RETINAL OCT SEGMENTATION

F IGURE 1 Choroid segmentation dataset with domain shifts. (a) Acquired by Topcon DRI-1 SS-OCT scanner using 12-line radial scan
mode. (b) Acquired by Topcon DRI-1 scanner using 256-line volumetric scan mode. (c) Acquired by Zeiss 4000 SD-OCT scanner using 128-line
volumetric scan mode.

F IGURE 2 Retinoschisis segmentation dataset with domain shifts. (a) Acquired by Topcon DRI-1 SS-OCT scanner using 12-line radial scan
mode (b) Acquired by SVision SS-OCT scanner using 96-line volumetric scan mode.

F IGURE 3 An overview of the proposed method.
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TSA-NET FOR RETINAL OCT SEGMENTATION 5

TABLE 1 Optical coherence tomography (OCT) datasets for unsupervised domain adaptation (UDA).

Task Domain Training Validation Testing Imaging protocol Scanner

Imaging
wavelength
(nm) Image size

B-scan
length
(mm)

Choroid Source 400 100 – 12-line radial scan Topcon
DRI-1

1310 1024 × 992 9

Target I 1320 – 330 256-line volumetric
scan

Topcon
DRI-1

1310 512 × 992 9

Target II 400 – 200 128-line volumetric
scan

Zeiss 4000 840 512 × 1024 6

Retino- schisis Source 1284 312 – 12-line radial scan Topcon
DRI-1

1310 1024 × 992 9

Target 1024 – 200 96-line volumetric
scan

SVision 1310 2048 × 1382 12

the Fourier transform-based domain adaptation (FDA)30

where no training is required. In FDA, the low-frequency
part of the source domain image is replaced with that of
a target domain image, to achieve a simple style trans-
fer between images and reduce the problem of domain
shift from the image level.

For a source domain image xs, calculate its 2-D
Fourier transform, and define FA as the magnitude and
FP as the phase, for which the low-frequency part is
in the center. In addition, use M𝛽 to denote a mask
whose value is 1 for the central region and 0 otherwise,
expressed as:

M𝛽 (h, w) = 1(h,w)∈[−𝛽H:𝛽H,−𝛽W :𝛽W ] (1)

where H and W represent the height and width of
the image respectively, and 𝛽 ∈ [0, 1] controls the size
of nonzero regions. Then the transferred image after
replacement can be represented as:

xs→t = F−1
([

M𝛽 ⋅ FA
(
xt
)]
+
(
1 − M𝛽

)
⋅ FA (xs) , FP (xs)

)

(2)

where F−1 represents the inverse Fourier transform.
Figure 4 shows the transferred source domain images

obtained by different values of 𝛽 on different datasets.
By replacing the low-frequency part, the reconstructed
source domain image appears closer to the target image
in intensity.Larger 𝛽 brings higher similarity.However, too
large 𝛽 values introduce ringing and blurring artifacts.By
visual inspection and ablation tests, the value of 𝛽 is set
as 0.01 in all experiments in this paper.

2.4 Feature-level domain adaptation

Image style transfer is task independent and thus has
insufficient discriminative power. Adversarial learning
enables models to learn how to extract domain-invariant
features by using adversarial loss to impose strong con-

F IGURE 4 Fourier transform based domain adaptation (FDA)
image style transfer. (a) Target domain I for choroid segmentation (b)
Target domain II for choroid segmentation (c) Target domain for
retinoschisis segmentation.

straints. In the pixel-level classification task of medical
image segmentation, the output space contains rich
information,and this information should be shared in dif-
ferent domains. Alignment in the output space is more
task-oriented and effective. Therefore, in this paper, we
adopt the strategy of adversarial learning in the output
space to achieve the purpose of feature-level domain
adaptation.

As shown in Figure 3, both the transferred source
domain images xs→t and target domain images xt pass
through the segmenter S, and their predicted probabil-
ity maps are input into the discriminator D. The goal
of S is to segment the source domain images cor-
rectly while making the predictions of two domains
undiscernible by D, and therefore it is optimized by mini-
mizing the supervised loss Lseg using ground truth for
source domain images, and the unsupervised adver-
sarial loss Ladv , which is the binary cross entropy
(BCE) loss that characterizes the difference between
the discriminator output for target domain image and
the source domain labels. The goal of D is to dif-
ferentiate the predictions from the two domains to its
best, and it is optimized by minimizing the discriminator
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6 TSA-NET FOR RETINAL OCT SEGMENTATION

loss LD, which contains the BCE losses that charac-
terize the difference between the discriminator output
for images from both domain and their true domain
labels, respectively. Joint minimization of these loss
functions enables the networks to obtain satisfactory
segmentation results while extracting domain-invariant
features.

2.5 Second-stage fine-tuning

After image and feature-level domain adaptation, an ini-
tial segmenter is trained. To further fit the segmenter
to target domain data, the pseudo-labeling technique,
which is originally used in semi-supervised learning,35 is
adopted to fine-tune the segmenter. Specifically, the ini-
tial segmenter is applied on the unlabeled target domain
training images,to get their pseudo-labels.Then the seg-
menter is fine-tuned using paired target domain images
and pseudo-labels.

The pseudo-labeling technique solves the problem of
model dependence on labeled data to a certain extent.
However, the pseudo-labels are often noisy. Directly
retraining the model with these noisy outputs as pseudo-
labels may degrade the segmentation performance of
the original model.35 To solve this problem, pseudo-
labels with high confidence should be selected. In
this paper, we use information entropy, a measure of
uncertainty of random variables,as the confidence mea-
sure of the prediction result. Specifically, the segmenter
trained in the first stage is used to get the output for the
target domain training images.The entropy for each pixel
in the prediction map is calculated and summed up to
get the confidence score of the prediction result of this
image, as follows:

Ext = −
∑
H,W

[
P(h,w)

xt log
(

P(h,w)
xt

)

+
(

1 − P(h,w)
xt

)
log

(
1 − P(h,w)

xt

)]
(3)

where P(h,w)
xt is the output probability at pixel location

(h, w).
Smaller entropy values mean lower uncertainty and

more reliable predictions.Figure 5 visualizes the entropy
maps for some target domain images for choroid seg-
mentation, where (a) and (b) represent low entropy
predictions, and (c) and (d) represent high entropy pre-
dictions. It can be seen that the highly uncertain regions
are often consistent with segmentation errors. For
images with lower total entropy values,the segmentation
is more accurate.

Then, k% of target domain training data with low-
est entropy values, with the first-stage prediction as
their pseudo-labels, denoted as (x̃t , ỹt), are selected to
fine-tune the segmenter.

F IGURE 5 Visualization of entropy maps of unlabeled target
domain data. (a) and (b) for low entropy predictions, and (c) and (d)
for high entropy predictions. First column: the original image, second
column: coarse segmentation result, third column: entropy maps,
fourth column: entropy maps zoomed in.

2.6 Network architecture

In this paper, we use the traditional U-shaped network
structure36 as the segmenter S. The feature encoder
contains four layers, each consisting of a convolution
kernel of size 3×3 with a step size of 1, batch nor-
malization and ReLU activation function. The image is
downsampled after each layer of the encoder using
maximum pooling to reduce the resolution of the image
while increasing the receptive field. Each decoder layer
consists of deconvolution and 3×3 convolutions. Skip
connections help avoid the loss of low-level semantic
information while reconstruction of the high-resolution
feature maps.

The discriminator D is patch-based, consists of four
convolutional layers with a kernel size of 4×4, each of
which is followed by a Leaky ReLU layer (Leak = 0.2),
and its output is a 32×32 matrix. This can make the
discriminator pay attention to each local patch, and
therefore effectively align the inter-domain features.

2.7 Loss functions

Let S(xt) and D(S(xt)) denote the output of the seg-
menter S and the discriminator D for target domain data,
and let S(xs→t) and D(S(xs→t)) denote the output of S
and D for style transferred source domain data, respec-
tively.In the first stage,for segmenter,the supervised loss
is a combination of the dice loss and the pixel-wise BCE
loss functions,and the adversarial loss function is a BCE
loss that measure the discrepancy between D(S(xt))
and the source domain label. Therefore, the total loss
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TSA-NET FOR RETINAL OCT SEGMENTATION 7

function L1
S for the segmenter is expressed as:

L1
S = LDice + LBCE + 𝛼LAdv (4)

Specifically, LDice, LBCE and LAdv are calculated as
follows:

LDice = 1 −
1
N

N∑
i=1

2Si
(
xs→t

)
ys

i(
Si

(
xs→t

))2
+
(
ys

i

)2
(5)

LBCE = −
1
N

N∑
i=1

×
[
ys

i logSi
(
xs→t

)
+
(
1 − ys

i

)
log

(
1 − Si

(
xs→t

))]

(6)

LAdv =
∑

xt∈Xt

LBCE
(
D
(
S
(
xt
))

, 0
)

= −
1
M

∑
xt∈Xt

M∑
m=1

log
(
1 − Dm

(
S
(
xt
)))

(7)

where Si(xs→t) represents the value of the ith pixel in the
predicted segmentation result of source domain image,
ys

i represents the ground truth label of the ith pixel,
N represents the total number of pixels in the image,
Dm(S(xt)) represents the mth element value in the out-
put matrix of the discriminator,M represents the number
of elements in the matrix, 0 represents the source
domain label,𝛼 represents the weight of the adversarial
loss. In this paper, 𝛼 is set to 0.001 empirically.

For the discriminator, the following BCE loss function
is chosen to optimize it.

LD = LBCE (D(S(xs→t)), 0) + LBCE(D(S(xt)), 1)

= −
1
M

M∑
m=1

log(1 − Dm(S(xs→t)))

−
1
M

M∑
m=1

log(Dm(S(xt))) (8)

where 0 and 1 represent the source and target domain
labels, respectively.

For the second stage, loss function L2
S for the seg-

menter only contains the supervised loss functions:

L2
S = LDice + LBCE (9)

3 EXPERIMENT SETTINGS

3.1 Evaluation metrics

In this paper, we use four evaluation metrics commonly
used in medical image segmentation tasks, namely dice

similarity coefficient (DSC),intersection over union (IoU),
sensitivity (Sen), and specificity (Spe).

3.2 Implementation details

The proposed method was implemented in Python using
the Pytorch framework on a GeForce GTX 2080Ti
graphics card with 11 GB GPU memory.The parameters
of the segmenter were updated by the stochastic gradi-
ent descent (SGD) algorithm (momentum = 0.9, weight
decay = 0.0001) and its initial learning rate is 0.01. Dif-
ferently, the discriminator adopts Adam optimizer with an
initial learning rate of 0.001.The segmenter and discrim-
inator were optimized alternatively. For both stages, the
networks were trained for 60 epochs.The batch size was
set as 2.

All images were resized to 512 × 512 and the inten-
sities were normalized to [0, 255] before input to the
networks.Data augmentation including random horizon-
tal flipping and Gaussian noise addition were applied for
training in both stages.The source domain validation set
was used to choose the best segmenter in the first stage.
For the second stage,in the selected target domain train-
ing data with pseudo-labels, 80% were used for training
and 20% for validation, to give the best model for test-
ing.For both pseudo-label generation and segmentation
output, a threshold of 0.5 was applied to the predicted
probability maps to get the binary mask.

4 EXPERIMENTAL RESULTS

4.1 Ablation tests

In the second stage, the target domain training data
with high-confidence pseudo-labels are selected to fine-
tune the segmenter.Table 2 shows the test results when
different percentage value k is set in this selection. It
can be seen that k = 70 gives the best overall per-
formance, because it can reach a balance between
retaining enough training data and removing enough
data with noisy labels. Therefore, 70% of target domain
training data is used for all our experiments.

Table 3 shows results of the ablation tests for com-
ponents of the proposed method. Here the baseline
means directly applying the segmenter trained on
source domain to target domain data. In the choroid
segmentation task, target domain I was obtained by the
same scanner but different protocol with source domain.
Compared with baseline, FDA based image-level style
transfer improves the IoU for 2.24%, adversarial learn-
ing (ADL) based feature-level alignment improves the
IoU for 5.81%, and combining them, the IoU is improved
by 6.93%. The proposed TSANet, with the second
stage added, has a total improvement of 8.34% for IoU.
Target domain II was obtained by the SD-OCT scanner
instead of the SS-OCT scanner for source domain,
resulting in bigger difference in image quality, and the

 24734209, 0, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.17012 by Soochow

 U
niversity, W

iley O
nline L

ibrary on [17/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 TSA-NET FOR RETINAL OCT SEGMENTATION

T
A

B
L

E
2

A
bl

at
io

n
te

st
s

on
pe

rc
en

ta
ge

of
da

ta
fo

r
ps

eu
do

-la
be

lt
ra

in
in

g
m

ea
n

(s
td

).

C
h

o
ro

id
se

g
m

en
ta

ti
o

n
Ta

rg
et

d
o

m
ai

n
I

Ta
rg

et
d

o
m

ai
n

II
R

et
in

o
sc

h
is

is
se

g
m

en
ta

ti
o

n
k(

%
)

Io
U

(%
)

D
S

C
(%

)
S

en
(%

)
S

p
e(

%
)

Io
U

(%
)

D
S

C
(%

)
S

en
(%

)
S

p
e(

%
)

Io
U

(%
)

D
S

C
(%

)
S

en
(%

)
S

p
e(

%
)

50
80

.7
2

(1
.6

1)
88

.3
4

(1
.3

3)
89

.8
3

(1
.6

3)
89

.0
8

(1
.5

2)
70

.0
5

(2
.6

3)
80

.4
7

(2
.3

0)
90

.5
5

(0
.9

8)
75

.5
2

(2
.8

9)
85

.6
4

(2
.6

0)
91

.1
9

(2
.3

7)
96

.2
3

(5
.3

9)
88

.5
7

(5
.0

1)

60
80

.3
7

(1
.5

3)
88

.1
9

(1
.3

1)
91

.4
7

(1
.4

6)
87

.6
4

(1
.4

9)
69

.8
2

(2
.3

9)
80

.6
5

(2
.0

8)
91

.4
7

(0
.8

9)
74

.5
5

(2
.6

1)
86

.0
2

(2
.1

1)
91

.5
0

(1
.7

0)
96

.7
0

(5
.2

0)
88

.1
9

(4
.9

8)

70
80

.5
1

(1
.2

8)
88

.6
3

(0
.9

5)
92

.5
6

(1
.1

7)
86

.1
5

(1
.7

2)
73

.4
0

(2
.6

7)
82

.4
7

(2
.3

4)
92

.6
6

(0
.7

2)
78

.2
1

(2
.9

8)
86

.8
4

(2
.0

6)
91

.9
2

(1
.7

4)
95

.8
9

(5
.2

5)
90

.7
8

(5
.0

6)

80
80

.3
4

(1
.5

6)
88

.1
1

(1
.5

9)
90

.9
(1

.5
9)

87
.8

(1
.4

8)
71

.5
1

(2
.3

5)
81

.9
3

(1
.9

7)
91

.1
9

(0
.8

5)
76

.7
8

(2
.5

8)
84

.7
9

(2
.3

4)
90

.5
2

(2
.0

7)
97

.2
4

(5
.2

7)
87

.1
2

(4
.9

6)

90
79

.7
9

(1
.5

6)
87

.8
3

(1
.2

7)
90

.7
1

(1
.5

1)
87

.2
3

(1
.5

5)
72

.0
3

(2
.7

2)
81

.6
7

(2
.4

3)
92

.6
5

(0
.6

0)
77

.0
8

(3
.0

2)
84

.4
1

(2
.4

0)
90

.1
8

(2
.1

2)
97

.3
2

(5
.2

8)
87

.2
2

(4
.9

5)

10
0

79
.3

8
(1

.5
7)

87
.5

5
(1

.3
0)

91
.4

3
(1

.5
2)

86
.1

4
(1

.5
8)

71
.3

6
(2

.6
6)

81
.3

4
(2

.3
3)

94
.0

2
(0

.4
9)

75
.3

1
(2

.9
2)

85
.7

1
(2

.1
5)

91
.2

3
(1

.8
2)

96
.9

3
(5

.2
6)

88
.3

9
(4

.9
8)

A
bb

re
vi

at
io

ns
:D

S
C

,d
ic

e
si

m
ila

rit
y

co
ef

fic
ie

nt
;I

oU
,i

nt
er

se
ct

io
n

ov
er

un
io

n;
S

en
,s

en
si

tiv
ity

;S
pe

,s
pe

ci
fic

ity
.

T
A

B
L

E
3

A
bl

at
io

n
te

st
of

co
m

po
ne

nt
s

of
th

e
pr

op
os

ed
T

S
A

N
et

m
ea

n(
st

d)
.

C
h

o
ro

id
se

g
m

en
ta

ti
o

n
Ta

rg
et

d
o

m
ai

n
I

Ta
rg

et
d

o
m

ai
n

II
R

et
in

o
sc

h
is

is
se

g
m

en
ta

ti
o

n
M

et
h

o
d

Io
U

(%
)

D
S

C
(%

)
S

en
(%

)
S

p
e

(%
)

Io
U

(%
)

D
S

C
(%

)
S

en
(%

)
S

p
e

(%
)

Io
U

(%
)

D
S

C
(%

)
S

en
(%

)
S

p
e

(%
)

B
as

el
in

e
72

.1
7

(1
.4

8)
82

.8
7

(1
.3

3)
91

.8
7

(1
.3

4)
77

.7
0

(1
.6

3)
17

.5
8

(2
.6

4)
25

.6
8

(3
.4

9)
75

.2
8

(5
.0

5)
35

.4
1

(2
.9

0)
83

.3
1

(2
.7

3)
88

.8
6

(2
.5

4)
96

.0
8

(5
.2

6)
89

.0
2

(5
.0

7)

+
F

D
A

74
.4

1
(1

.6
9)

84
.1

7
(1

.4
0)

84
.7

8
(1

.8
3)

86
.0

9
(1

.4
4)

28
.9

3
(3

.1
5)

39
.8

9
(3

.8
8)

73
.8

3
(4

.1
7)

40
.8

7
(3

.3
5)

86
.0

5
(2

.3
1)

91
.0

9
(2

.1
1)

96
.5

7
(5

.2
8)

89
.8

5
(5

.1
1)

+
A

D
L

77
.9

8
(1

.7
8)

86
.8

1
(1

.6
1)

91
.9

6
(1

.3
0)

84
.3

8
(1

.9
3)

67
.4

1
(3

.1
2)

77
.5

0
(3

.0
2)

88
.9

5
(1

.0
0)

74
.4

9
(3

.5
1)

84
.9

6
(2

.5
1)

90
.2

8
(2

.2
8)

95
.9

8
(5

.3
1)

89
.5

0
(5

.1
5)

+
F

D
A
+

A
D

L
79

.1
0

(1
.4

4)
87

.5
0

(1
.2

2)
91

.9
5

(1
.1

9)
85

.5
1

(1
.8

0)
70

.9
4

(2
.8

9)
80

.5
5

(2
.6

9)
89

.8
1

(1
.0

8)
77

.1
7

(3
.2

3)
86

.6
2

(2
.1

1)
91

.7
9

(1
.8

1)
96

.0
0

(5
.2

5)
90

.6
5

(5
.0

8)

T
S

A
N

et
80

.5
1

(1
.2

8)
88

.6
3

(0
.9

5)
92

.5
6

(1
.1

7)
86

.1
5

(1
.7

2)
73

.4
0

(2
.6

7)
82

.4
7

(2
.3

4)
92

.6
6

(0
.7

2)
78

.2
1

(2
.9

8)
86

.8
4

(2
.0

6)
91

.9
2

(1
.7

4)
95

.8
9

(5
.2

5)
90

.7
8

(5
.0

6)

A
bb

re
vi

at
io

ns
:A

D
L,

ad
ve

rs
ar

ia
ll

ea
rn

in
g;

D
S

C
,d

ic
e

si
m

ila
rit

y
co

ef
fic

ie
nt

;F
D

A
,f

ou
rie

r
tr

an
sf

or
m

ba
se

d
do

m
ai

n
ad

ap
ta

tio
n;

Io
U

,i
nt

er
se

ct
io

n
ov

er
un

io
n;

S
en

,s
en

si
tiv

ity
;S

pe
,s

pe
ci

fic
ity

;T
S

A
N

et
,t

w
o-

st
ag

e
ad

ve
rs

ar
ia

ll
ea

rn
in

g
ba

se
d

ne
tw

or
k.

 24734209, 0, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.17012 by Soochow

 U
niversity, W

iley O
nline L

ibrary on [17/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



TSA-NET FOR RETINAL OCT SEGMENTATION 9

effect of domain adaptation is more profound. Without
domain adaptation, the model fails in the target domain
with IoU of only 17.58%. Applying FDA improves it
to 28.93%, and applying ADL effectively improves
the IoU to 67.41%. Combining the two improves the
IoU to 70.94%, and adding the second stage further
improves it to 73.40%. In the retinoschisis segmen-
tation task, the source and target domain data were
from two different SS-OCT scanners. FDA improves
the IoU by 2.74%, ADL improves the IoU by 1.65%,
combining them improves the IoU by 3.31%. The pro-
posed TSANet has a total improvement of 3.53% for
IoU. Similar improvements can be observed in most
other performance indices. Although for retinoschisis
segmentation, the sensitivity of TSANet is slightly lower
than the other variations, its specificity is higher, and
the two indices are more balanced, thus giving a better
overall segmentation performance. These ablation tests
show that all the proposed components contribute to
the performance of the proposed UDA scheme.

4.2 Comparison with other UDA
methods

We compare the proposed method with state-of -the-art
unsupervised domain adaptation semantic segmenta-
tion methods, including AdaptSeg,20 AdaptPatch,22

ADVENT,24 CycleGAN,13 CYCADA,16 MCDDA,23

Maxsquare,25 SIFA17, and VarDA.37 Table 4 shows
the comparison results.

Comparing the proposed TSANet with all other meth-
ods, it achieved the highest IoU of 80.51% and 73.40%
in the two target domains for choroid segmentation,
respectively, and achieved the highest IoU of 86.84%
in the target domain for retinoschisis segmentation.
Wilcoxon rank sum test was performed on IoU val-
ues between the results of TSANet and other methods.
Except for CycleGAN on the Retinoschisis dataset, the
improvement achieved by the proposed TSANet has
statistical significance with p < 0.05. The dice is also
the highest among all methods compared. The sensi-
tivity and specificity are relatively balanced among all
test sets. The inference time of the proposed method is
42 ms for each B-scan, which is decent and can meet
the requirements of clinical applications.

In addition, visual comparisons of the results with
existing methods are shown in Figures 6–8. It can be
seen from the three figures that compared with the
existing methods, the proposed method can segment
the target area more correctly, and the cases of false
positives and false negatives are reduced.

5 DISCUSSION AND CONCLUSIONS

There is domain shift between OCT images obtained
by different scanners or different imaging protocols. In T
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10 TSA-NET FOR RETINAL OCT SEGMENTATION

F IGURE 6 Choroid segmentation results of target I dataset using different algorithms (a) original image, (b) ground truth, (c) AdaptSeg, (d)
AdaptPatch, (e) Advent, (f) CycleGAN, (g) CYCADA, (h) MCDDA, (i) Maxsquare, (j) SIFA, (k) VarDA, and (l) TSANet.

F IGURE 7 Choroid segmentation results of target II dataset using different algorithms (a) original image, (b) ground truth, (c) AdaptSeg, (d)
AdaptPatch, (e) Advent, (f) CycleGAN, (g) CYCADA, (h) MCDDA, (i) Maxsquare, (j) SIFA, (k) VarDA, and (l) TSANet.

this paper, we aim at the task of unsupervised domain
adaptation for OCT segmentation and propose a two-
stage adversarial learning-based network. We address
the problem of domain shifts between images from
three perspectives: image-level adaptation through a
simple style transfer technique, feature-level adaptation
through discrimination in the output space, and model
fine-tuning based on highly confident pseudo-labels
from target domain. We conduct extensive experiments
to validate the performance of the proposed method.
The experiments involve two segmentation tasks, cor-
responding to anatomical structure and lesion area,
respectively, and three different scanners with various
imaging protocols. Ablation tests show that all steps
in the proposed method contributed to the final perfor-
mance. Compared with single image-level adaptation
using CycleGAN,12 single output space adaptation
methods such as AdaptSeg27 and AdaptPatch,28

and multi-level adaptation method CYCADA,11 and
other state-of -the-art UDA methods,17,29–31,37 the

proposed method achieved superior performance.
The experiments demonstrate the applicability and
generalizability of the proposed model for OCT
segmentation.

There are some limitations of the proposed model.
First, there are some parameters, including the ratio 𝛽

in FDA that controls the range of replaced frequency
components and the percentage k that controls the pro-
portion of pseudo-labeled data for model refinement,
that may need to be tuned for different datasets to get
optimal performance. Second, in the joint loss function,
fixed weights are used. In the future, some data-driven
adaptation strategies can be explored to optimize the
loss function. Third, the proposed method requires two
separate training stages. We will investigate end-to-end
domain adaptation methods in our future work. Fur-
thermore, we will also explore the design of network
structures and make the segmenter and discrimina-
tor more effective, to further improve the segmentation
performance.
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TSA-NET FOR RETINAL OCT SEGMENTATION 11

F IGURE 8 Retinoschisis segmentation results of target dataset using different algorithms (a) original image, (b) ground truth, (c) AdaptSeg,
(d) AdaptPatch, (e) Advent, (f) CycleGAN, (g) CYCADA, (h) MCDDA, (i) Maxsquare, (j) SIFA, (k) VarDA, and (l) TSANet.

Although the proposed method is not end-to-end in
training, in testing only the trained segmenter is needed.
This ensures its efficiency when used in real clinical
applications. In addition, the proposed method is poten-
tially applicable for segmentation of other retinal layers
or lesions. In clinical practice, it is often the case that the
same analysis needs to be performed on images from
different domains. With the proposed UDA method, for
a specific segmentation task, only one set of labeled
OCT data in a particular domain is needed and can
be repeatedly used. When it comes to any new OCT
scanner or new imaging protocol,only unlabeled images
are needed to retrain the model, thus saving the great
deal of efforts in manual labeling each time for a new
domain. Furthermore, if a small amount of annotated
data is available in the new domain, it can be readily inte-
grated into the second stage training and can potentially
improve the model performance.

In conclusion, we propose a UDA method that can
effectively improve the segmentation performance when
adapting the deep learning model to new OCT data,
without the need of additional manual annotations.
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